
File system driver filtering against metamorphic viral coding
a

Ruo Ando, Hideaki Miura*,Yoshiyasu Takefuji
Graduate School of Media and Governance,Keio University,

5322 Endo Fujisawa, Kanagawa, 252 Japan
*SciencePark Corporation

1-1538-11 Iriya Zama, Kanagawa, Japan 228-0024
{ruo,takefuji}@sfc.keio.ac.jp http://www.neuro.sfc.keio.ac.jp

*miura@sciencepark.co.jp http://www.sciencepark.co.jp
a
a

Abstract: - Recent cyber attacks and viruses become more sophisticated. Metamorphic virus such as Win32 simile
have a greate impact on anti-virus software developers, which evades signature mathing by inserting redundant
fake assembler operation codes. In this paper we propose a file system device driver enhanced protection
technique to prevent the metamorphic viral coding attack. File system driver filtering can detect the morphed viral
code scattered over infected program in run-time environment without emulation. This technique enables us to
apply systematic detection for the large number of malformed code by detecting a single event on device driver
layer. In experiment, we focused on the metamorphic coding of buffer overflow exploit and it was showed that
proposal system is effective in preventing the viral coding attack regardless of its metamorphic transformation.
Our system is applicable only by replacing device driver enhanced of the inspecting buffer overlfow. Without
modifying operating system, service software, application software, the trap in the kernel level is able to detect the
buffer overflows in real-time and to provide process-control after obtaining the detailed data about malicious
processes.
a
Key-Words: - Metamorphic computer virus, Device driver based protection, Buffer overflow, File system driver,
Complexity of metamorphism, Filter driver, Real time nullification
A
g

a

1 Introduction
The number of security incidents is still constantly
increasing, which imposes a great burden on both the
server administrators and client users. Despite the
short history, computer virus is becoming one of the
most important issue. Although it has been about one
decade since computer viruses became expected
occurrence, Viruses, worms and Trojan damages
personals, companies government. Code Red, Nimda
and MsBlaster recently are a valid example showing
we suffer the great damege if we keep using the
computer unpatced. We have come to accept the
updating a software regularly and uniformly. Besides,
the cost of maintaining and updating vulnerable
software is increasing gradually but certainly.
a
1.1 Metamorphism : viral code hiding
Recent cyber attacks and viruses become more
sophisticated, while many users begin to equip anti
virus scanners that is mainly relies on signature
matching. Recently virus is improved rapidly so as to
evade signature matching. Symantec Corporation
published the paper [2] introducing metamorphic

viruses against the impact of W32 simile computer
virus, loading complex viral code hiding techniques.
Viral code hiding techniques which avoid the string
matching are not new phenomenon. This kind of
technology is first appeared in early 1990’s, called
polymorphic computer virus. Polymorphic viral
coding applies encryption for its body to nullify the
virus scanning. Still now polymorphic virus is
challenging to detect completely and effectively.
However, there exists detection method and scanners
that survives and improved from DOS 16bit days for
Polymorphic coding attack [3].

Metamorphic virus can change whole its body
with any encryption. Instead of the crypt engine,
metamorphic viral code are generated by inserting
redundant assembler, replacing register and changing
magic word so as not to disturb the same action of
pre-morphed virus in targeting operating system. As a
result, after metamorphic coding, the virus can
change its body while keeping the same function. As
we discuss in section 3.1, once some virus become
metamorphic, little piece of viral code are scattered
over the whole infected program body. Consequently

virus scanner cannot detect it with the sequence
matching.

Although metamorphic virus is not appeared
newly like polymorphic viruses, with the rapid
improvement and complication in 32 bit processors
and operating system, metamorphism is applied
studiously by virus writers. While there are actually
the scanners that survived DOS polymorphic days, no
one can find the effective way of detecting viral
metamorphism. Besides, it is hard to automate the
heuristic process of detecting metamorphic compared
with another viral code hiding techniques.
a
1.2 Buffer overflow as higher action
There are many kinds of computer viruses. Among
those, from the sections below, we focus the
systematic approach to detect the malmormed viruses
loading buffer overflow exploits. The thrust of this
paper is to validate that there is the possibility of
catching “higher actions” that are performed by
computer viruses regardless of its metamorphic form.
The proposal system introduces a layer built by
device driver programming where we can cancel the
redundant assembler instruction and translate some
operation code into more abstract action. Adversely,
the proposal techniques detect one higher action from
many kinds of derivation of metamorphism,
regardless of its forms on register transfer, that is,
assembler level. For example, metamorphism is based
on the point that multiple implementation of one
action (such as call kernel32.dll) could be possible by
using several combination of operation code.
a

a

Fig. 1 Allocation in stack
af
In this paper we pick up buffer overflow as one
example of higher actions. Buffer overflow is one of
the most commonly exploited in software bugs, which
is occurred when the memory reserved for data is not
assigned enough size for processing inputs[1].

Figure1 illustrates the sample of allocating buffers
and pointers when the local function is called. In most
implementation in C, there could be the case that the
longer input is allocated in the memory that it can
handle by array length previously fixed. In the
implementation that includes such bugs, a malicious
user can rewrite the return address, which is indicated
on ESP, by submitting of an extra-long input to the
program. If ESP pointer is overwritten, it come to be
possible to execute arbitrary malicious actions after
operation is return from local function.
s

Fig. 2. BOF exploits with nop instruction
s

Figure 2 shows the illustration of buffer overflow
using NOP instruction. In many cases of malicious
code execution, it is almost impossible to estimate
offset for the target program, so the virus writer
inserts NOP instruction ahead of shellcode to improve
the probabilities of exploitations. This could be:
P(exploit)=1-(P(t2)-P(t1)) P(t2)>P(t1).

Where P(exploit) is the probability of succeeding
malicious code execution. P(t1) changes according to
the size of buffer assigned in the target program.
However, by using our system, we can catch the
moment of returning from function. Consequently,
proposal system enables us to prevent malicious code
execution regardless of its probabilities of BOF
exploitation.

Unfortunately or not, almost all the modern
operating systems are constructed with the demand of
high-level languages, which consists of the procedure
and function. Consequently, stack and heap is
irreplaceable implementation for this kind of system
to control the flow of the call and return instructions.
Nowadays, more than 70% of security incidents have
been occurred by buffer overflow [10], which is still
undiscovered despite the efforts of inspecting and
verifying programs both manually and automatically.
It is expected that the improvement of secure
programming[11] is more required for the
preventative against security incident. We will

discuss some countermeasures for buffer overflow in
section 2.3.
a
2 Related work
In this section we discuss about some technologies
detecting computer viruses. Detection method could
be categorized into two types: 1)signature matching
dealing with knows misuse viral coding and
2)heuristic scan applying discover method to find
unregistered computer virus. Heuristic scan is almost
as same meaning as anomaly detection adopting
data-mining techniques for secure network [12][13].
Another type is adaptive protection, which is
implemented compiler to inspect the integrity of call
pointers when program is executed.
a
2.1 Signature matching
Signature matching is searching the particular byte
sequences in files according to each format, .COM
file, .EXE file, .out file, scripts and macros. If
predefined sequences are found, some action such as
alarm, nullifying is triggered. In the sense that
signature matching hardly generate false positive
alarm, this technique is still core mode of anti virus
detection. Signature matching, while made more
flexible by pre-qualifying files and type of infections,
and using wild cards, still requires exact matches
between infection and signature. Also [6] shows the
effectiveness in anomaly detection of process
behavior by tracing system call sequence
Although the Anti virus software have relies much on
signature-based techniques including regular
expression and wild card, it could be pointed out that
this method is sometimes CPU intensive, and costs a
lot in frequently managing signature. And to ensure
signature definitions, these should be updated from
server of each vendor regularly and uniformly.
Consequently time lag of updating could be the cost
and cause to be exploited when it is not updated.
a
2.2 Heuristic scan
Recently anti virus software began to equip heuristic
scan. Heuristic scanning is the operation to
complement signature matching in finding potentially
malicious code (or actual viral code) that have not
been released and corresponded by anti virus software
vendor. Instead of looking for specific strings,
heuristic scanning deal with higher information such
as assembler operation code or commands in order to
find uncategorized viruses or possibility of malicious
code.

The word heuristic (hyu-RIS-tik), which is
originated from Greek word heuriskein, means the
way to determine something in a methodic or
experimental way. A skilled programmer can notice
the sign of malicious operation from normal one when
he inspects the program carefully by some debugging
tools. Heuristic scan is applied so that the experience
or knowledge of debug expert in to a anti virus
software. These scanning techniques are now
available in many popular anti virus software
although there still many way proposed to evade
heuristic scanners. When it is executed, heuristic
scanner searches hundreds of operation code,
instructions and behaviors that viral code may include
and calculate possibility according to the threshold
the user has set up. Nowadays, it is summarized by
AV vendors that about 70-80% of unknown virus can
be detected in heuristic scan.
a
2.3 Stack protection technologies
Adaptive protection mainly represented by compiler
solution is loaded in major operating systems [8]. In
this section we pick up the stack inspection and
protection technologies. Static analysis of C language
program is proposed in [5]. However, the longer the
code to inspect becomes, it is more difficult to find a
malformation point of return address or data area
even for the skilled developer. StackGuard [4] is
designed to check overwritten. This is a mechanism
that can be embedded in standard GNU C compiler
gcc, inserting value called “canary” just next to the
return address. The key point behind it is that buffer
overflow attacks is overwriting any local variables,
old base pointer and finally the return address by
overfilling the buffer intentionally. Also libsafe is the
library version of stack protection techniques. Point
guard is the same kind of techniques of Stack Guard,
but it requires particular programmer intervention. In
the recent version of OpenBSD, these stack protection
technologies is available from the version 3.3.
However, it could be pointed that t heir disadvantage
lies in that kernels and software components must be
rebuilt. Disadvantage of the compiler-based stack
protection technologies are as follows:
[1] When the compiled program is loaded to the
memory, its process is heavier to run than the
previous process, because RA (return address)
integrity check is executed whenever the function is
called.
[2] There are still techniques proposed to overwrite
return address without changing canary word.

[3] Every software and kernel modules must be
recompiled whenever the bug or vulnerabilities are
found in previous version of the source code.
s

Particularly concerning [3], we should consider
these three constraints to maintain secure computer
operation environment.
s
[1]It is impossible to find all vulnerabilities in the
existing operating systems and application software
programs.
[2]It is impossible to patch the vulnerable systems
immediately.
[3]It is impossible to rebuild the risk-free system and
replace the existing system.

s
The proposed scheme does not need the
software-rebuilding. We only need to replace the
driver module of the proposal version in existing
operating system. As we discussed later, the concept
of proposal method is operating system independent.
a
3 Metamorphic viral coding
As we discussed in section 1.2, there are two methods
to evade the string template matching: polymorphic
and metamorphic coding. Although the polymorphic
viruses are hard to prevent still now, there exists a
countermeasures that have been improve since DOS
16 bit era. Polymorphic virus must have a executable
code section that operating system can recognize.
Then, once decrypted or decrypting engine is
discovered, this could be manageable by signature
scanner and eradiated. On the other hand, through the
last decade when the architecture of 32 bit processors
or operating system becomes more sophisticated and
complicated, metamorphism is studiously applied by
virus writers. As matters stand, there is no decisive
technique for detecting metamorphic viral coding.
Anti virus software companies says that less than 70-
80 % of viral metamorphism could be detected. In this
section, we discuss four types of metamorphic viral
coding, which are the same in mutating operating
code and magic word form the same higher action.
a
3.1 Register replacement
As some simple techniques of metamorphic coding,
we can exploit the exchangeability of some registers
in IA 32 architecture.
A
POP EDX
MOV EDI, 0008H

MOV ESI,EBP
MOV EAX 000DH
ADD EDX, 005FH
MOV EDX,[EDX]
MOV [ESI+EAX*0000CCC9,EBX]
a
POP EAX
MOV EDX,0008H
MOV EDX,EBP
MOV EDI,000DH
ADD EAX,005FH
MOV ESI,[EAX]
MOV [EDX+EDI*0000CCC9],ESI
List1. Register replacement
a

List 1 shows the metamorphic coding of
generating two different forms by replacing register.
In this case, edx is replaced by eax, ebx by edi, edi by
ebx, and esi by ebx. As a result, when this kind of
code is translated in machine language, machine code
is changed after compilation.
a
3.2 Magic number permutation
Some metamorphic virus mutates a new form by
changing magic word. List2 shows the substitution of
magic word into ESI is permutated. The line 1 is
malformed by using register EDI and EDX. And in
line 2, substitution of 110000FFH is translated
through EDX and EBX.
a
MOV DWORD PTR [ESI] ,11000000H
MOV DWORD PTR [ESI+0004],110000FFH
a
MOV EDI,11000000H
MOV [ESI],EDI
POP EDI
PUSH EDX
MOV DH,40
MOV EDX,110000FFH
PUSH EBX
MOV EDX,EBX
MOV [ESI+0004],EDX
List2. Register permutation
a

Compared with the list2, which could be detected
by crafted string matching such as half-byte wild
cards, the next case in list 3 go further to change
magic value 11000FFH.
a
MOV EDX,11000000H
MOV [ESI],EBX

POP EDX
PUSH ECX
MOV ECX,11000000H
ADD ECX,000000FFH
MOV [ESI+0004],ECX
List3. Magic number permutation
a

List3 shows dividing the magic word 110000FF
into 11000000 and 000000FF. Consequently, wild
card based string matching become disable to find the
magic number.
a
3.3 Reordering instructions
Compared with polymorphic viruses which decrypt
themselves to a constant virus body in memory, this
type of metamorphic does not come to be constant
because jump instruction is inserted at random.
a
INSTRUCTION_A
INSTRUCTION_B
INSTRUCTION_C:
a
LABEL_2:
INSTRUCTION B
JMP
FAKE INSTRUCTIONS
START:
LABEL_3:
INSTRUCTION_C:
LABEL_1:
JMP
FAKE INSTRUCTIONS
List4. Reordering instructions
a

List4 shows the obfuscation of entry point to
avoid the searching of the beginning of the executable
code section. As a result, signature is scattered in
amongst the original code. Furthermore, in this
technique virus can inserts fake instruction between
core instruction and jump code. In extremely case of
this kind of method, Win95 Zperm is the first virus to
generate millions of iterations to surpress the anti
viral emulation speed.

These four types of metamorphism are the same in
the sense that there could be translated as the certain
abstraction from both core and fake instructions
regardless of its various malforming forms. In other
words, whatever the code is permutated, the function
that each morphed code has to achieve is the same,
consequently a kind of higher action can be logged as
event in device driver. Concretely, with the example

in section 1.2, overflow is finally occurred despite its
malformation of assembler code. Adversely, as long
as we can only investigate on the assembler
instruction level, we cannot go out of heuristic or data
mining frameworks. From the next sections, we
propose an insertion of new layer, called device driver
based protection layer, to obtain the highly abstracted
action of metamorphic code.
f
3.4 Complexity of metamorphism
In this section we discuss about the complexity to
detect the morphed viral code. Through last decade,
operating system and CPU have become more
sophisticated and complicated accompanying with
implementation of many function, consequently we
do not use all instructions and operations at the same
time for one purpose. Adversely, many combinations
of routines come to be possible to achieve the same
utilization. Metamorphic viruses are exploiting this
point of modern computer system. Morphed virus
writer implements n functions in order to generate n!
variations. For example, if Win32 metamorphic virus
such as W32/ghost has 16 routines, the combination
could be:
Combination = 16! = 20922789888000

Besides, the computer viruses choose one
sequence of instructions almost unpredictably, among
possible combinations using random number based
on some value such as TLB (thread information
block). Also another register transition that is usually
unpredictable could be the seed of random number.
Selection = random (seed) Seed : FS:Och, EIP, etc
 Figure2 shows the illustration of list inserting fake
instructions for redundant state in order to evade the
signature matching.
f
MOV DWORD_3,6E72654BH
MOV ESI,[EDX](*)
MOV DWORD_4, 32336C65H
MOV EDI,[EBX-04X](*)
MOV DWORD_5,0H
NOP(*)
CALL DS:[GETMODULEHANDLEA]
*FAKE INSTRUCTION
List5. Inserting fake operations
f

List3 shows the metamorphic code of calling API.
As we discussed in section 1.2, the higher action of
this code is “locate the kernel32 dll in the memory”.
In Intel 32 bit architecture, there are eight generic
registers available for programmers, all of which are
not used in single operation. Particularly, ECX, EDX,

ESI and EDI are often applied for auxiliary use. It
follows that at factorial of 4 combinations is possible
without accounting order of fake instructions.

f

Fig. 3 Redundant loop of list 5

Concerning the magic number, every magic

number in windows operating system can be
decomposed arbitrarily into 32 bit memory address
number. However, the hexadecimal numbers from
0xBFFFFFFF to 0x00000000 is preferable because
the address from 0xFFFFFFFF from 0xC0000000 is
number in kernel mode that is inclined to be hooked
in heuristic scanning. Thus, metamorphic viral coder
can generate the vast number of derivations using the
large memory space and abundant availability of
operations in IA and Win 32 elaborate architecture.

f
4 Proposal system
4.1 System architecture
Figure3 shows what we can focus on to detect
malicious action in four layers: C language program,
kernel mode in operating system, events in device
driver, and assembly code register transfer level.
A

Fig. 4 Detecting style and object in four layers
Af

Many traditional detection methods are applied on
high-level language layer, kernel mode in operating
system or low-level register transfer layer. It is an
important point that each previous detection on layer
[1][2][4], it is impossible to nullify the buffer

overflow exploits because of the lack of adequate
abstract data and events necessary to obtain for
detecting buffer overflow in real-time. In other words,
we have to get proper level of abstractness to get
event information of malicious action. For previous
detection techniques to detect morphed viral code,
any detection in layer [1][2][4] is too abstract or
concrete. To solve this problem, we built and equip
the device driver based protection layer in the kernel
mode where the existing device drivers can mutually
communicate each other. As a result, we can protect
the memory from the malicious operation directly.
Besides, the new attributes can be added to memory
management functions through this proposal layer.

f
4.2 File system driver filtering
Figure3 shows the simplified illustration of proposal
system in windows 2000/NT Operating system
structure. When certain file in storage device loaded
in main memory, virtual memory manager and file
system driver works mutually for the process
management. In addition, it is important feature of
Windows 2000 operation system that file system filter
driver is placed on file system driver to observe the
IRP (I/O request packet) information and stop the
instruction flow if there are some errors.
f
a

a

Fig. 5. Proposal system
f

The proposal technique applies the file system
filter driver to inspect integrity of transition of
instruction pointer before and after the function call.
In windows operating system, virtual memory
manager and file system driver coordinates to each
other. Consequently we can obtain the detailed

process context by improving file system driver and
filter driver with the help of virtual memory manager.
Ff
4.3 Real-time detection and prevention
In this paper we implemented the driver-based stack
protection system detecting buffer overrun. As we
discussed in section 1.2, buffer overflow is occurred
when we overwrite the buffer with the longer strings
even to reach the EBP (base pointer) and EIP (return
address). In proposal system we can hook the function
call, and loading memory of execution file into
memory of focused application by improving file
system driver and filter driver on it.
a
[1]When loading the execution program to main
memory, the proposal protection layer traps for the
call pointers in order to set the read-only memory
attribute to the instruction pointer of return address on
runtime.
[2]Malicious access to the read-only memory
(instruction pointer of return address) is detected by
system error where invalid memory access
notification can be hooked by the proposal protection
layer. Consequently, the malicious execution code is
nullified.
a

a
Fig. 6. Real-time nullification of BOF
A

Figure5 illustrates the real-time protection of
return address in proposal method. In this system, any
exploitation is aborted by malicious memory access
with this function. Whether operating system has
unknown security holes or not, malicious execution
code on read-only memory access is nullified and
aborted.

Ff

F
FFig. 7. On-line virus protection

f
Figure6 shows the protection system against

network virus infection. There are many cases that the
vulnerabilities of the software permitting inputs from
both client and server without buffer bound checking.
In our system, it is possible to prevent malicious code
execution such as MSBlast, CodeRed in permitting
illegally long inputs by file system based process
handler.
f
4 Experimental results
4.1 Experimental Environment
In experiments, the proposal system has been
implemented as service on Windows 2000 operating
system. Our system consist of system file(SYS),
registry editing script(REG), and executable(EXE).
Executable file running as service stored in
C:\%systemroot%\system32.
The device driver protection file is placed in driver
directory, with the configuration of parameter in
C:\%systemroot%\HKEY_LOCAL_MACHINE
\SYSTEMCurrentControlSet\Services\
\Antistackoverflow.
With this prototype version of driver based protection
system, we can observe a single process by specifying
case-sensitive name for anti stack buffer overflow
services.
a
4.2 Penetration program
Our attacker program is written in VC++ and MASM
(Microsoft Macro Assembler) to occur buffer overrun.
We adapt the simple form of buffer overflow.
Program is verified in three types of metamorphic
discussed above, based on the same forms as follows.
void bof_proc()
retadr= arbitrary address;

char large_string[];
memset();
large_string[]=arbitrary code;
large string[] = retadr;
memcpy(large_string,buffer,n);
a
main()
__asm(label1:)
bof_proc();
__asm(jmp label1)
a
List6. Program for experiment
a

After the buffer overrun, the instructional pointer
is moved just after return address overwritten. As is
list5, in order to execute particular application of
Windows, we jump to the address of Winexec(). For
obtaining reproducibility and many examples of
situations on Windows operating system, we set up
loop routine of buffer overflow using inline assembler
in VC++.

Af
5.3 Obtained results and analysis
In experiment we should consider that there could be
many metamorphic coding way even in the simple
overrun-based illustrated in section 1.2. In theory, if
the virus has ten subroutines, the number of variations
of metamorphic coding could be 10!. Although some
signature for detecting viruses is expected to be the
machine code of launching shell code[1], this time we
focused the craft metamorphic coding for our own
attacker program itself. The patterns we tested in the
validation of the proposal driver-based protection
system is as follows:
a
Case1: Register and instruction replacement
 In the nature of the protection system, the stack
segment is protected. We apply metamorphism for
bof_proc() illustrated in section 3.1.
Case2: Magic number permutation
 Many exploits code attempts to launch some
application or API. In particular, the function
Winexec() is often called after buffer overflow. We
permute the magic number of fixed address of
Winexec() in windows 2000 operating system
without no service pack.
Case3: Reordering instructions
We scattered the jump instruction and insert the fake
instructions just after it in order to malform the
signature from which the morphed one is derived.

a

In these three cases, our system is effective to
detect misuse and invalid the malicious process
despite the forms of metamorphic coding. No matter
how morphed the assembler code written in register
transfer level is, the transition of pointers such as EBP,
EIP, and ESP is eventually combining as then same
value in driver-level observation. In other words, by
inserting file system driver-based protection layer, we
can observe the integrity of register transition directly,
which is not the case in applying heuristic scanning or
data mining techniques.
A
5 Conclusion
In today’s IA32 and Win32 based computer system,
we currently should consider following three
constraints in maintaining secure environment.
f
[1]It is impossible to find all vulnerabilities in the
existing operating systems and application software
programs.
[2]It is impossible to patch the vulnerable systems
immediately.
[3]It is impossible to rebuild the risk-free system and
replace the existing system.
f

In this paper, the file system driver based
protection was introduced in an attempt to detect and
prevent metamorphic computer viruses without
rebuilding vulnerable application and kernel source
codes. The conventional anti-virus software, firewall,
and IDS are all based on stored signatures.
Consequently these schemes have the limitation
against the new derivation using metamorphic coding
discussed in section 3. The examples in this paper
represent a possibility of detecting higher action
against metamorphic viral coding regardless of its
form of morphed viruses. The advantages in applying
the proposal driver enhanced protection are as
follows:
f
[1]Compared with the signature matching and
heuristic scanning: previously, to detect the
polymorphic and metamorphic viruses, heuristic scan
is applied with the average probability rate of
detection about 70%, which is claimed by anti virus
software vendors. By using proposal method we can
observe the integrity of the pointer transition and
stack operation in run-time host environment.
Consequently, this technique enables us to apply
systematic detection for the large number of

malformed code by just a single detection of event on
device driver layer.
[2]Compared with compiler based stack protection
technologies: The proposed protection method does
not need the software-rebuilding, while the
compiler-based protection schemes need the
software-rebuilding. The concept of proposal method
is operating system independent.
f

For further work, the thrust of our next version of
protection system is the process-control where
malicious execution codes are nullified by the new
attribute of read-only memory in the instruction
pointer through file system driver layer.

f
Acknowledgements
We are indebted to K.Shoji, T.Kawade and T.Nozaki
by courtesy of SciencePark Corporation[9]. The idea
of the proposal system in this paper grew out of an
ongoing collaboration with their team.
This effort is supported by AFOR Scientific
Research with Grant Number AOARD 03-4049.
f
f
References:
[1] Aleph One,Smasing The Stack For Fun And Profit.
Phrack, 7(49), November 1996.
[2] Szor, Peter and Ferrie, Peter. "Hunting for
Metamorphic." Virus Bulletin Conference,
September 2001.
[3] Stephen Pearce, “Viral Polymorphism”, paper
submitted for GSEC version 1.4b,2003.
[4] C.Cowan, C.Pu, D.Maier, J.Walpole, P.Bakke,
S.Beattie, A.Grier, P.Wagle, Q.Zhang, and H.Hinton.
StackGuard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In Proc. 7th
USENIX Security Conference, pages 63--78, San
Antonio, Texas, jan 1998
[5] David Larochelle and David Evans,Statically
Detecting Likely Buffer Overflow
Vulnerabilities,2001 USENIX Security Symposium,
Washington, D.C., August 13-17, 2001.
[6] Kosoresow, Andrew P. and Steven A. Hofmeyr,
"Intrusion Detection Via System Call Traces", IEEE
Software, Sept.–Oct. 1997, pp 35-40.
[7]Diomidis Spinellis. Reliable identification of
bounded-length viruses is NP-complete. IEEE
Transactions on Information Theory, 49(1):280-284,
January 2003.
[8]Openwall linux project.
http://www.openwall.com/linux

[9] 4th Eye: Robust security system against malicious
employees.
http://www.sciencepark.co.jp/4thEye/Eng/
[10]NIST vulnerabilities database engine.
http://icat.nist.gov/
[11]Khaled.E.A.Negm,"Secure Mobile Code
Computing in Distributed Environment", WSEAS
TRANSACTIONS ON
COMUTERS,2003,pp506-513
[12] Dimitris A. Karras, Vasilis Zorkadis,
"Neural Network Techniques for Improved Intrusion
Detection in Communication Systems"
WSEAS CSCC,2001,pp318-323
[13]Ruo Ando, Yoshiyasu Takefuji,
"Two-stage quantitative network incident detection
for the adaptive coordination with SMTP proxy",
Computer Network Security, Lecture note in
computer science Springer 2003,pp424-428

